Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542250

RESUMEN

Onboard oxygen-generating systems (OBOGSs) provide increased inspired oxygen (FiO2) to mitigate the risk of neurologic injury in high altitude aviators. OBOGSs can deliver highly variable oxygen concentrations oscillating around a predetermined FiO2 set point, even when the aircraft cabin altitude is relatively stable. Steady-state exposure to 100% FiO2 evokes neurovascular vasoconstriction, diminished cerebral perfusion, and altered electroencephalographic activity. Whether non-steady-state FiO2 exposure leads to similar outcomes is unknown. This study characterized the physiologic responses to steady-state and non-steady-state FiO2 during normobaric and hypobaric environmental pressures emulating cockpit pressures within tactical aircraft. The participants received an indwelling radial arterial catheter while exposed to steady-state or non-steady-state FiO2 levels oscillating ± 15% of prescribed set points in a hypobaric chamber. Steady-state exposure to 21% FiO2 during normobaria produced arterial blood gas values within the anticipated ranges. Exposure to non-steady-state FiO2 led to PaO2 levels higher upon cessation of non-steady-state FiO2 than when measured during steady-state exposure. This pattern was consistent across all FiO2 ranges, at each barometric condition. Prefrontal cortical activation during cognitive testing was lower following exposure to non-steady-state FiO2 >50% and <100% during both normobaria and hypobaria of 494 mmHg. The serum analyte levels (IL-6, IP-10, MCP-1, MDC, IL-15, and VEGF-D) increased 48 h following the exposures. We found non-steady-state FiO2 levels >50% reduced prefrontal cortical brain activation during the cognitive challenge, consistent with an evoked pattern of neurovascular constriction and dilation.


Asunto(s)
Citocinas , Oxígeno , Humanos , Análisis de los Gases de la Sangre , Altitud , Corteza Prefrontal
2.
J Am Heart Assoc ; 10(10): e016676, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33938226

RESUMEN

Background Amiodarone is administered during resuscitation, but its antiarrhythmic effects during targeted temperature management are unknown. The purpose of this study was to determine the effect of both therapeutic hypothermia and amiodarone on arrhythmia substrates during resuscitation from cardiac arrest. Methods and Results We utilized 2 complementary models: (1) In vitro no-flow global ischemia canine left ventricular transmural wedge preparation. Wedges at different temperatures (36°C or 32°C) were given 5 µmol/L amiodarone (36-Amio or 32-Amio, each n=8) and subsequently underwent ischemia and reperfusion. Results were compared with previous controls. Optical mapping was used to measure action potential duration, dispersion of repolarization (DOR), and conduction velocity (CV). (2) In vivo pig model of resuscitation. Pigs (control or targeted temperature management, 32-34°C) underwent ischemic cardiac arrest and were administered amiodarone (or not) after 8 minutes of ventricular fibrillation. In vitro: therapeutic hypothermia but not amiodarone prolonged action potential duration. During ischemia, DOR increased in the 32-Amio group versus 32-Alone (84±7 ms versus 40±7 ms, P<0.05) while CV slowed in the 32-Amio group. Amiodarone did not affect CV, DOR, or action potential duration during ischemia at 36°C. Conduction block was only observed at 36°C (5/8 36-Amio versus 6/7 36-Alone, 0/8 32-Amio, versus 0/7 32-Alone). In vivo: QTc decreased upon reperfusion from ischemia that was ameliorated by targeted temperature management. Amiodarone did not worsen DOR or CV. Amiodarone suppressed rearrest caused by ventricular fibrillation (7/8 without amiodarone, 2/7 with amiodarone, P=0.041), but not pulseless electrical activity (2/8 without amiodarone, 5/7 with amiodarone, P=0.13). Conclusions Although amiodarone abolishes a beneficial effect of therapeutic hypothermia on ischemia-induced DOR and CV, it did not worsen susceptibility to ventricular tachycardia/ventricular fibrillation during resuscitation.


Asunto(s)
Amiodarona/farmacología , Paro Cardíaco/terapia , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/fisiopatología , Hipotermia Inducida/métodos , Resucitación/métodos , Fibrilación Ventricular/complicaciones , Potenciales de Acción/fisiología , Animales , Antiarrítmicos/farmacología , Modelos Animales de Enfermedad , Perros , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Masculino , Porcinos , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/terapia
3.
Front Cardiovasc Med ; 6: 135, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552276

RESUMEN

We discuss large animal translational models of arrhythmia susceptibility and sudden cardiac death, focusing on important considerations when interpreting the data derived before applying them to human trials. The utility of large animal models of arrhythmia and the pros and cons of specific translational large animals used will be discussed, including the necessary tradeoffs between models designed to derive mechanisms vs. those to test therapies. Recent technical advancements which can be applied to large animal models of arrhythmias to better elucidate mechanistic insights will be introduced. Finally, some specific examples of past successes and challenges in translating the results of large animal models of arrhythmias to clinical trials and practice will be examined, and common themes regarding the success and failure of translating studies to therapy in man will be discussed.

4.
Heart Rhythm ; 16(2): 281-289, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30193854

RESUMEN

BACKGROUND: Cardiac alternans is promoted by heart failure (HF)-induced calcium (Ca2+) cycling abnormalities. Late sodium current (INa,L) is enhanced in HF and promotes Ca2+ overload; however, mechanisms underlying an antiarrhythmic effect of INa,L blockade in HF remain unclear. OBJECTIVE: The purpose of this study was to determine whether ranolazine suppresses cardiac alternans in HF by normalizing Ca2+ cycling. METHODS: Transmural dual optical mapping of Ca2+ transients and action potentials was performed in wedge preparations from 8 HF and 8 control (normal) dogs. Susceptibility to action potential duration alternans (APD-ALT) and Ca2+ transient alternans (Ca-ALT) was compared at baseline and with ranolazine (5-10 µM). RESULTS: HF increased APD- and Ca-ALT compared to normal (both P <.05), and ranolazine suppressed APD- and Ca-ALT in both groups (P <.05). The incidence of spatially discordant alternans (DIS-ALT) was increased by HF (8/8) compared to normal (4/8; P <.05), and ranolazine decreased DIS-ALT in HF (4/8; P <.05).Not only did ranolazine mitigate HF-induced Ca2+ overload, it also attenuated APD-ALT to Ca-ALT gain (amount of APD-ALT produced by Ca-ALT). In HF, APD-ALT to Ca-ALT gain was significantly increased (0.55 ± 0.02) compared to normal (0.44 ± 0.02; P <.05) and was normalized by ranolazine (0.36 ± 0.05; P <.05), representing a complementary mechanism by which INa,L blockade suppressed cardiac alternans. CONCLUSION: Ranolazine attenuated arrhythmogenic cardiac alternans in HF, both by suppressing Ca-ALT and decreasing the coupling gain of APD-ALT to Ca-ALT. Blockade of INa,L may reverse impaired Ca2+ cycling to mitigate cardiac alternans, representing a mechanism underlying the antiarrhythmic benefit of INa,L blockade in HF.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Calcio/metabolismo , Sistema de Conducción Cardíaco/efectos de los fármacos , Insuficiencia Cardíaca/complicaciones , Miocitos Cardíacos/metabolismo , Ranolazina/uso terapéutico , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Modelos Animales de Enfermedad , Perros , Sistema de Conducción Cardíaco/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/patología , Imagen Óptica/métodos , Bloqueadores de los Canales de Sodio/uso terapéutico
6.
J Am Heart Assoc ; 6(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150491

RESUMEN

BACKGROUND: We designed an innovative porcine model of ischemia-induced arrest to determine dynamic arrhythmia substrates during focal infarct, global ischemia from ventricular tachycardia or fibrillation (VT/VF) and then reperfusion to determine the effect of therapeutic hypothermia (TH) on dynamic arrhythmia substrates and resuscitation outcomes. METHODS AND RESULTS: Anesthetized adult pigs underwent thoracotomy and regional plunge electrode placement in the left ventricle. Subjects were then maintained at either control (CT; 37°C, n=9) or TH (33°C, n=8). The left anterior descending artery (LAD) was occluded and ventricular fibrillation occurred spontaneously or was induced after 30 minutes. Advanced cardiac life support was started after 8 minutes, and LAD reperfusion occurred 60 minutes after occlusion. Incidences of VF/VT and survival were compared with ventricular ectopy, cardiac alternans, global dispersion of repolarization during LAD occlusion, and LAD reperfusion. There was no difference in incidence of VT/VF between groups during LAD occlusion (44% in CT versus 50% in TH; P=1s). During LAD occlusion, ectopy was increased in CT and suppressed in TH (33±11 ventricular ectopic beats/min versus 4±6 ventricular ectopic beats/min; P=0.009). Global dispersion of repolarization and cardiac alternans were similar between groups. During LAD reperfusion, TH doubled the incidence of cardiac alternans compared with CT, with a marked increase in VF/VT (100% in TH versus 17% in CT; P=0.004). Ectopy and global dispersion of repolarization were similar between groups during LAD reperfusion. CONCLUSIONS: TH alters arrhythmia substrates in a porcine translational model of resuscitation from ischemic cardiac arrest during the complex phases of resuscitation. TH worsens cardiac alternans, which was associated with an increase in spontaneous VT/VF during reperfusion.


Asunto(s)
Arritmias Cardíacas/terapia , Hipotermia Inducida/métodos , Daño por Reperfusión Miocárdica/complicaciones , Resucitación/métodos , Animales , Arritmias Cardíacas/etiología , Modelos Animales de Enfermedad , Paro Cardíaco/terapia , Daño por Reperfusión Miocárdica/terapia , Porcinos
7.
Circ J ; 82(1): 62-70, 2017 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-28781289

RESUMEN

BACKGROUND: Severe hypothermia (SH) is known to be arrhythmogenic, but the effect of therapeutic hypothermia (TH) on arrhythmias is unclear. It is hypothesized that susceptibility to Ca-mediated arrhythmia triggers would be increased only by SH.Methods and Results:Spontaneous Ca release (SCR) and resultant delayed afterdepolarizations (DADs) were evaluated by optical mapping in canine wedge preparations during normothermia (N, 36℃), TH (32℃) or SH (28℃; n=8 each). The slope (amplitude/rise time) of multicellular SCR (mSCR) events, a determinant of triggered activity, was suppressed in TH (24.4±3.4%/s vs. N: 41.5±6.0%/s), but significantly higher in SH (96.3±8.1%/s) producing higher amplitude DADs in SH (35.7±1.6%) and smaller in TH (5.3±1.0% vs. N: 10.0±1.1%, all P<0.05). Triggered activity was only observed in SH. In isolated myocytes, sarcoplasmic reticulum (SR) Ca release kinetics slowed in a temperature-dependent manner, prolonging Ca transient rise time [33±3 (N) vs. 50±6 (TH) vs. 88±12 ms (SH), P<0.05], which can explain the decreased mSCR slope and DAD amplitude in TH. Although the SR Ca content was similar in TH and SH, Ca spark frequency was markedly increased only in SH, suggesting that increased ryanodine receptor open probability could explain the increased triggered activity during SH. CONCLUSIONS: Temperature dependence of Ca release can explain susceptibility to Ca-mediated arrhythmia triggers in SH. This may therefore explain the increased risk of lethal arrhythmia in SH, but not during TH.


Asunto(s)
Arritmias Cardíacas/etiología , Hipotermia Inducida/efectos adversos , Hipotermia/complicaciones , Animales , Calcio/metabolismo , Perros , Humanos , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo , Temperatura
8.
Am J Physiol Heart Circ Physiol ; 312(5): H886-H895, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28283549

RESUMEN

Acute cardiac ischemia induces conduction velocity (CV) slowing and conduction block, promoting reentrant arrhythmias leading to sudden cardiac arrest. Previously, we found that mild hypothermia (MH; 32°C) attenuates ischemia-induced conduction block and CV slowing in a canine model of early global ischemia. Acute ischemia impairs cellular excitability and the gap junction (GJ) protein connexin (Cx)43. We hypothesized that MH prevented ischemia-induced conduction block and CV slowing by preserving GJ expression and localization. Canine left ventricular preparations at control (36°C) or MH (32°C) were subjected to no-flow prolonged (30 min) ischemia. Optical action potentials were recorded from the transmural left ventricular wall, and CV was measured throughout ischemia. Cx43 and Na+ channel (NaCh) remodeling was assessed using both confocal immunofluorescence (IF) and/or Western blot analysis. Cellular excitability was determined by microelectrode recordings of action potential upstroke velocity (dV/dtmax) and resting membrane potential (RMP). NaCh current was measured in isolated canine myocytes at 36 and 32°C. As expected, MH prevented conduction block and mitigated ischemia-induced CV slowing during 30 min of ischemia. MH maintained Cx43 at the intercalated disk (ID) and attenuated ischemia-induced Cx43 degradation by both IF and Western blot analysis. MH also preserved dV/dtmax and NaCh function without affecting RMP. No difference in NaCh expression was seen at the ID by IF or Western blot analysis. In conclusion, MH preserves myocardial conduction during prolonged ischemia by maintaining Cx43 expression at the ID and maintaining NaCh function. Hypothermic preservation of GJ coupling and NaCh may be novel antiarrhythmic strategies during resuscitation.NEW & NOTEWORTHY Therapeutic hypothermia is now a class I recommendation for resuscitation from cardiac arrest. This study determined that hypothermia preserves gap junction coupling as well as Na+ channel function during acute cardiac ischemia, attenuating conduction slowing and preventing conduction block, suggesting that induced hypothermia may be a novel antiarrhythmic strategy in resuscitation.


Asunto(s)
Comunicación Celular , Uniones Comunicantes , Sistema de Conducción Cardíaco , Hipotermia Inducida/métodos , Isquemia Miocárdica/terapia , Canales de Sodio , Potenciales de Acción/fisiología , Animales , Conexinas/metabolismo , Perros , Masculino , Microelectrodos , Microscopía Confocal , Células Musculares/metabolismo , Función Ventricular Izquierda
9.
Crit Care Med ; 40(11): 2954-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22890250

RESUMEN

OBJECTIVES: Although the majority of sudden cardiac arrests occur in patients with ischemic heart disease, the effect of therapeutic hypothermia on arrhythmia susceptibility during acute global ischemia is not well understood. While both ischemia and severe hypothermia are arrhythmogenic, patients undergoing therapeutic hypothermia do not have an increase in arrhythmias, despite the fact that most sudden cardiac arrest occur in the setting of ischemia. We hypothesized that mild hypothermia induced prior to myocardial ischemia and reperfusion will have a beneficial effect on ischemia-related arrhythmia substrates. DESIGN: We developed a model of global ischemia and reperfusion in the canine wedge preparation to study the transmural electrophysiologic effects of ischemia at different temperatures. SETTING: Animal study. SUBJECTS: Male mongrel dogs. INTERVENTIONS: Canine left ventricle wedge preparations at 1) control (36°C) or 2) mild hypothermia, to simulate temperatures used in therapeutic hypothermia (32°C), were subjected to 15 mins of no-flow ischemia and subsequently reperfused. MEASUREMENTS AND MAIN RESULTS: Optical action potentials were recorded spanning the transmural wall of left ventricle. Action potential duration for epicardial, mid-myocardial, and epicardial cells was measured. Transmural dispersion of repolarization and conduction velocity were measured at baseline, during ischemia, and during reperfusion. No difference was seen at baseline for conduction velocity or dispersion of repolarization between groups. Conduction velocity decreased from 0.46 ± 0.02 m/sec to 0.23 ± 0.07 m/sec, and dispersion of repolarization increased from 30 ± 5 msecs to 57 ± 4 msecs in the control group at 15 mins of ischemia. Mild hypothermia attenuated both the ischemia-induced conduction velocity slowing (decreasing from 0.44 ± 0.02 m/sec to 0.35 ± 0.03 m/sec; p = .019) and the ischemia-induced increase in dispersion of repolarization (25 ± 3 msecs to 37 ± 7 msecs; p = .037). Epicardial conduction block was observed in six of seven preparations of the control group, but no preparations in the mild hypothermia group developed conduction block (0/6). CONCLUSIONS: Mild hypothermia attenuated ischemia-induced increase in dispersion of repolarization, conduction slowing, and block, which are known mechanisms of arrhythmogenesis in ischemia. These data suggest that therapeutic hypothermia may decrease arrhythmogenesis during myocardial ischemia.


Asunto(s)
Arritmias Cardíacas/prevención & control , Hipotermia Inducida , Modelos Animales , Isquemia Miocárdica/complicaciones , Animales , Perros , Masculino , Reperfusión Miocárdica , Estados Unidos , Imagen de Colorante Sensible al Voltaje
10.
Circ Arrhythm Electrophysiol ; 4(1): 79-86, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21163888

RESUMEN

BACKGROUND: Hypothermia is proarrhythmic, and, as the use of therapeutic hypothermia (TH) increases, it is critically important to understand the electrophysiological effects of hypothermia on cardiac myocytes and arrhythmia substrates. We tested the hypothesis that hypothermia-enhanced transmural dispersion of repolarization (DOR) is a mechanism of arrhythmogenesis in hypothermia. In addition, we investigated whether the degree of hypothermia, the rate of temperature change, and cooling versus rewarming would alter hypothermia-induced arrhythmia substrates. METHODS AND RESULTS: Optical action potentials were recorded from cells spanning the transmural wall of canine left ventricular wedge preparations at baseline (36°C), during cooling and during rewarming. Electrophysiological parameters were examined while varying the depth of hypothermia. On cooling to 26°C, DOR increased from 26±4 ms to 93±18 ms (P=0.021); conduction velocity decreased from 35±5 cm/s to 22±5 cm/s (P=0.010). On rewarming to 36°C, DOR remained prolonged, whereas conduction velocity returned to baseline. Conduction block and reentry was observed in all severe hypothermia preparations. Ventricular fibrillation/ventricular tachycardia was seen more during rewarming (4/5) versus cooling (2/6). In TH (n=7), cooling to 32°C mildly increased DOR (31±6 to 50±9, P=0.012), with return to baseline on rewarming and was associated with decreased arrhythmia susceptibility. Increased rate of cooling did not further enhance DOR or arrhythmogenesis. CONCLUSIONS: Hypothermia amplifies DOR and is a mechanism for arrhythmogenesis. DOR is directly dependent on the depth of cooling and rewarming. This provides insight into the clinical observation of a low incidence of arrhythmias in TH and has implications for protocols for the clinical application of TH.


Asunto(s)
Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Hipotermia Inducida/efectos adversos , Hipotermia/complicaciones , Hipotermia/fisiopatología , Índice de Severidad de la Enfermedad , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/etiología , Perros , Electrocardiografía , Incidencia , Modelos Animales , Factores de Riesgo , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Temperatura , Factores de Tiempo , Fibrilación Ventricular/epidemiología , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...